Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Nat Commun ; 13(1): 3057, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650195

RESUMEN

Desmoplastic small round cell tumor (DSRCT) is an aggressive, usually incurable sarcoma subtype that predominantly occurs in post-pubertal young males. Recent evidence suggests that the androgen receptor (AR) can promote tumor progression in DSRCTs. However, the mechanism of AR-induced oncogenic stimulation remains undetermined. Herein, we demonstrate that enzalutamide and AR-directed antisense oligonucleotides (AR-ASO) block 5α-dihydrotestosterone (DHT)-induced DSRCT cell proliferation and reduce xenograft tumor burden. Gene expression analysis and chromatin immunoprecipitation sequencing (ChIP-seq) were performed to elucidate how AR signaling regulates cellular epigenetic programs. Remarkably, ChIP-seq revealed novel DSRCT-specific AR DNA binding sites adjacent to key oncogenic regulators, including WT1 (the C-terminal partner of the pathognomonic fusion protein) and FOXF1. Additionally, AR occupied enhancer sites that regulate the Wnt pathway, neural differentiation, and embryonic organ development, implicating AR in dysfunctional cell lineage commitment. Our findings have direct clinical implications given the widespread availability of FDA-approved androgen-targeted agents used for prostate cancer.


Asunto(s)
Antagonistas de Receptores Androgénicos , Tumor Desmoplásico de Células Pequeñas Redondas , Receptores Androgénicos , Antagonistas de Receptores Androgénicos/farmacología , Andrógenos , Animales , Línea Celular Tumoral , Tumor Desmoplásico de Células Pequeñas Redondas/genética , Humanos , Masculino , Oligonucleótidos Antisentido/farmacología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Immunother Cancer ; 10(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35387780

RESUMEN

BACKGROUND: The Regulatory T cell (Treg) lineage is defined by the transcription factor FOXP3, which controls immune-suppressive gene expression profiles. Tregs are often recruited in high frequencies to the tumor microenvironment where they can suppress antitumor immunity. We hypothesized that pharmacological inhibition of FOXP3 by systemically delivered, unformulated constrained ethyl-modified antisense oligonucleotides could modulate the activity of Tregs and augment antitumor immunity providing therapeutic benefit in cancer models and potentially in man. METHODS: We have identified murine Foxp3 antisense oligonucleotides (ASOs) and clinical candidate human FOXP3 ASO AZD8701. Pharmacology and biological effects of FOXP3 inhibitors on Treg function and antitumor immunity were tested in cultured Tregs and mouse syngeneic tumor models. Experiments were controlled by vehicle and non-targeting control ASO groups as well as by use of multiple independent FOXP3 ASOs. Statistical significance of biological effects was evaluated by one or two-way analysis of variance with multiple comparisons. RESULTS: AZD8701 demonstrated a dose-dependent knockdown of FOXP3 in primary Tregs, reduction of suppressive function and efficient target downregulation in humanized mice at clinically relevant doses. Surrogate murine FOXP3 ASO, which efficiently downregulated Foxp3 messenger RNA and protein levels in primary Tregs, reduced Treg suppressive function in immune suppression assays in vitro. FOXP3 ASO promoted more than 70% reduction in FOXP3 levels in Tregs in vitro and in vivo, strongly modulated Treg effector molecules (eg, ICOS, CTLA-4, CD25 and 4-1BB), and augmented CD8+ T cell activation and produced antitumor activity in syngeneic tumor models. The combination of FOXP3 ASOs with immune checkpoint blockade further enhanced antitumor efficacy. CONCLUSIONS: Antisense inhibitors of FOXP3 offer a promising novel cancer immunotherapy approach. AZD8701 is being developed clinically as a first-in-class FOXP3 inhibitor for the treatment of cancer currently in Ph1a/b clinical trial (NCT04504669).


Asunto(s)
Neoplasias , Oligonucleótidos Antisentido , Animales , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Terapia de Inmunosupresión , Inmunoterapia , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Linfocitos T Reguladores , Microambiente Tumoral
3.
N Engl J Med ; 386(11): 1026-1033, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35294812

RESUMEN

BACKGROUND: Hereditary angioedema is characterized by recurrent and unpredictable swellings that are disabling and potentially fatal. Selective inhibition of plasma prekallikrein production by antisense oligonucleotide treatment (donidalorsen) may reduce the frequency of attacks and the burden of disease. METHODS: In this phase 2 trial, we randomly assigned, in a 2:1 ratio, patients with hereditary angioedema with C1 inhibitor deficiency to receive four subcutaneous doses of either donidalorsen (80 mg) or placebo, with one dose administered every 4 weeks. The primary end point was the time-normalized number of investigator-confirmed angioedema attacks per month (attack rate) between week 1 (baseline) and week 17. Secondary end points included quality of life, as measured with the Angioedema Quality of Life Questionnaire (scores range from 0 to 100, with higher scores indicating worse quality of life), and safety. RESULTS: A total of 20 patients were enrolled, of whom 14 were randomly assigned to receive donidalorsen and 6 to receive placebo. The mean monthly rate of investigator-confirmed angioedema attacks was 0.23 (95% confidence interval [CI], 0.08 to 0.39) among patients receiving donidalorsen and 2.21 (95% CI, 0.58 to 3.85) among patients receiving placebo (mean difference, -90%; 95% CI, -96 to -76; P<0.001). The mean change from baseline to week 17 in the Angioedema Quality of Life Questionnaire score was -26.8 points in the donidalorsen group and -6.2 points in the placebo group (mean difference, -20.7 points; 95% CI, -32.7 to -8.7). The incidence of mild-to-moderate adverse events was 71% among patients receiving donidalorsen and 83% among those receiving placebo. CONCLUSIONS: Among patients with hereditary angioedema, donidalorsen treatment resulted in a significantly lower rate of angioedema attacks than placebo in this small, phase 2 trial. (Funded by Ionis Pharmaceuticals; ISIS 721744-CS2 ClinicalTrials.gov number, NCT04030598.).


Asunto(s)
Angioedemas Hereditarios , Oligonucleótidos Antisentido , Precalicreína , Adulto , Femenino , Humanos , Masculino , Angioedemas Hereditarios/tratamiento farmacológico , Supervivencia sin Enfermedad , Esquema de Medicación , Oligonucleótidos Antisentido/efectos adversos , Oligonucleótidos Antisentido/uso terapéutico , Gravedad del Paciente , Precalicreína/antagonistas & inhibidores , Precalicreína/genética , Calidad de Vida , ARN Mensajero/antagonistas & inhibidores
5.
Transl Stroke Res ; 13(2): 287-299, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34241810

RESUMEN

Plasma kallikrein (PKa) has been implicated in contributing to hemorrhage following thrombolytic therapy; however, its role in spontaneous intracerebral hemorrhage is currently not available. This report investigates the role of PKa on hemorrhage and hypertension in stroke-prone spontaneously hypertensive rats (SHRSP). SHRSP were fed with a high salt-containing stroke-prone diet to increase blood pressure and induce intracerebral hemorrhage. The roles of PKa on blood pressure, hemorrhage, and survival in SHRSP were examined in rats receiving a PKa inhibitor or plasma prekallikrein antisense oligonucleotide (PK ASO) compared with rats receiving control ASO. Effects on PKa on the proteolytic cleavage of atrial natriuretic peptide (ANP) were analyzed by tandem mass spectrometry. We show that SHRSP on high-salt diet displayed increased levels of PKa activity compared with control rats. Cleaved kininogen was increased in plasma during stroke compared to SHRSP without stroke. Systemic administration of a PKa inhibitor or PK ASO to SHRSP reduced hemorrhage and blood pressure, and improved neurological function and survival compared with SHRSP receiving control ASO. Since PKa inhibition was associated with reduced blood pressure in hypertensive rats, we investigated the effects of PKa on the cleavage of ANP. Incubation of PKa with ANP resulted in the generation fragment ANP5-28, which displayed reduced effects on blood pressure lowering compared with full length ANP. PKa contributes to increased blood pressure in SHRSP, which is associated with hemorrhage and reduced survival. PKa-mediated cleavage of ANP reduces its blood pressure lowering effects and thereby may contribute to hypertension-induced intracerebral hemorrhage.


Asunto(s)
Hipertensión , Accidente Cerebrovascular , Animales , Factor Natriurético Atrial , Presión Sanguínea/fisiología , Hemorragia Cerebral/complicaciones , Hipertensión/complicaciones , Calicreína Plasmática , Ratas , Ratas Endogámicas SHR , Accidente Cerebrovascular/complicaciones
6.
Commun Biol ; 4(1): 1241, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725463

RESUMEN

Next generation modified antisense oligonucleotides (ASOs) are commercially approved new therapeutic modalities, yet poor productive uptake and endosomal entrapment in tumour cells limit their broad application. Here we compare intracellular traffic of anti KRAS antisense oligonucleotide (AZD4785) in tumour cell lines PC9 and LK2, with good and poor productive uptake, respectively. We find that the majority of AZD4785 is rapidly delivered to CD63+late endosomes (LE) in both cell lines. Importantly, lysobisphosphatidic acid (LBPA) that triggers ASO LE escape is presented in CD63+LE in PC9 but not in LK2 cells. Moreover, both cell lines recycle AZD4785 in extracellular vesicles (EVs); however, AZD4785 quantification by advanced mass spectrometry and proteomic analysis reveals that LK2 recycles more AZD4785 and RNA-binding proteins. Finally, stimulating LBPA intracellular production or blocking EV recycling enhances AZD4785 activity in LK2 but not in PC9 cells thus offering a possible strategy to enhance ASO potency in tumour cells with poor productive uptake of ASOs.


Asunto(s)
Antineoplásicos/farmacología , Vesículas Extracelulares/fisiología , Lisofosfolípidos/metabolismo , Monoglicéridos/metabolismo , Oligodesoxirribonucleótidos Antisentido/farmacología , Línea Celular Tumoral , Humanos
7.
STAR Protoc ; 2(2): 100565, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34136833

RESUMEN

Interferon regulatory factor 4 (IRF4) is a transcription factor that regulates normal and malignant immune cell development and is implicated in multiple myeloma pathogenesis. This protocol describes the use of combined cell surface and intranuclear staining with fluorescent antibodies to measure IRF4 protein expression within myeloma and normal immune cells. IRF4 protein quantification may provide a valuable prognostic tool to predict disease severity and sensitivity to IRF4-targeted therapies. This flow-cytometry-based procedure could also be rapidly translated into a clinically compatible assay. For complete details on the use and execution of this protocol, please refer to Mondala et al. (2021).


Asunto(s)
Células de la Médula Ósea/metabolismo , Citometría de Flujo/métodos , Factores Reguladores del Interferón/metabolismo , Mieloma Múltiple/metabolismo , Humanos , Límite de Detección , Mieloma Múltiple/patología
8.
Blood ; 138(18): 1705-1720, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34077955

RESUMEN

Alterations in KRAS have been identified as the most recurring somatic variants in the multiple myeloma (MM) mutational landscape. Combining DNA and RNA sequencing, we studied 756 patients and observed KRAS as the most frequently mutated gene in patients at diagnosis; in addition, we demonstrated the persistence or de novo occurrence of the KRAS aberration at disease relapse. Small-molecule inhibitors targeting KRAS have been developed; however, they are selective for tumors carrying the KRASG12C mutation. Therefore, there is still a need to develop novel therapeutic approaches to target the KRAS mutational events found in other tumor types, including MM. We used AZD4785, a potent and selective antisense oligonucleotide that selectively targets and downregulates all KRAS isoforms, as a tool to dissect the functional sequelae secondary to KRAS silencing in MM within the context of the bone marrow niche and demonstrated its ability to significantly silence KRAS, leading to inhibition of MM tumor growth, both in vitro and in vivo, and confirming KRAS as a driver and therapeutic target in MM.


Asunto(s)
Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mutación/efectos de los fármacos , Oligonucleótidos Antisentido/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Humanos , Ratones SCID , Terapia Molecular Dirigida , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Oligonucleótidos Antisentido/uso terapéutico , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico
10.
Cell Stem Cell ; 28(4): 623-636.e9, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33476575

RESUMEN

In multiple myeloma, inflammatory and anti-viral pathways promote disease progression and cancer stem cell generation. Using diverse pre-clinical models, we investigated the role of interferon regulatory factor 4 (IRF4) in myeloma progenitor regeneration. In a patient-derived xenograft model that recapitulates IRF4 pathway activation in human myeloma, we test the effects of IRF4 antisense oligonucleotides (ASOs) and identify a lead agent for clinical development (ION251). IRF4 overexpression expands myeloma progenitors, while IRF4 ASOs impair myeloma cell survival and reduce IRF4 and c-MYC expression. IRF4 ASO monotherapy impedes tumor formation and myeloma dissemination in xenograft models, improving animal survival. Moreover, IRF4 ASOs eradicate myeloma progenitors and malignant plasma cells while sparing normal human hematopoietic stem cell development. Mechanistically, IRF4 inhibition disrupts cell cycle progression, downregulates stem cell and cell adhesion transcript expression, and promotes sensitivity to myeloma drugs. These findings will enable rapid clinical development of selective IRF4 inhibitors to prevent myeloma progenitor-driven relapse.


Asunto(s)
Mieloma Múltiple , Preparaciones Farmacéuticas , Animales , Ciclo Celular , Línea Celular Tumoral , Humanos , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Recurrencia Local de Neoplasia , Oligonucleótidos Antisentido
11.
J Hepatol ; 74(5): 1155-1166, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33338512

RESUMEN

BACKGROUND & AIMS: Telomerase activation is the earliest event in hepatocellular carcinoma (HCC) development. Thus, we aimed to elucidate the role of telomere length maintenance during liver carcinogenesis. METHODS: Telomere length was measured in the tumor and non-tumor liver tissues of 1,502 patients (978 with HCC) and integrated with TERT alterations and expression, as well as clinical and molecular (analyzed by genome, exome, targeted and/or RNA-sequencing) features of HCC. The preclinical efficacy of anti-TERT antisense oligonucleotides (ASO) was assessed in vitro in 26 cell lines and in vivo in a xenograft mouse model. RESULTS: Aging, liver fibrosis, male sex and excessive alcohol consumption were independent determinants of liver telomere attrition. HCC that developed in livers with long telomeres frequently had wild-type TERT with progenitor features and BAP1 mutations. In contrast, HCC that developed on livers with short telomeres were enriched in the non-proliferative HCC class and frequently had somatic TERT promoter mutations. In HCCs, telomere length is stabilized in a narrow biological range around 5.7 kb, similar to non-tumor livers, by various mechanisms that activate TERT expression. Long telomeres are characteristic of very aggressive HCCs, associated with the G3 transcriptomic subclass, TP53 alterations and poor prognosis. In HCC cell lines, TERT silencing with ASO was efficient in highly proliferative and poorly differentiated cells. Treatment for 3 to 16 weeks induced cell proliferation arrest in 12 cell lines through telomere shortening, DNA damage and activation of apoptosis. The therapeutic effect was also obtained in a xenograft mouse model. CONCLUSIONS: Telomere maintenance in HCC carcinogenesis is diverse, and is associated with tumor progression and aggressiveness. The efficacy of anti-TERT ASO treatment in cell lines revealed the oncogenic addiction to TERT in HCC, providing a preclinical rationale for anti-TERT ASO treatment in HCC clinical trials. LAY SUMMARY: Telomeres are repeated DNA sequences that protect chromosomes and naturally shorten in most adult cells because of the inactivation of the TERT gene, coding for the telomerase enzyme. Here we show that telomere attrition in the liver, modulated by aging, sex, fibrosis and alcohol, associates with specific clinical and molecular features of hepatocellular carcinoma, the most frequent primary liver cancer. We also show that liver cancer is dependent on TERT reactivation and telomere maintenance, which could be targeted through a novel therapeutic approach called antisense oligonucleotides.


Asunto(s)
Envejecimiento/fisiología , Carcinogénesis/genética , Carcinoma Hepatocelular , Neoplasias Hepáticas , Oligonucleótidos Antisentido/farmacología , Telomerasa/metabolismo , Homeostasis del Telómero , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Línea Celular Tumoral , Descubrimiento de Drogas , Etanol/metabolismo , Humanos , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Dependencia del Oncogén , Factores Sexuales , Telomerasa/genética , Homeostasis del Telómero/efectos de los fármacos , Homeostasis del Telómero/fisiología
12.
Retrovirology ; 17(1): 27, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859220

RESUMEN

BACKGROUND: Adult T-cell leukemia lymphoma (ATLL) is a chemotherapy-resistant malignancy with a median survival of less than one year that will afflict between one hundred thousand and one million individuals worldwide who are currently infected with human T-cell leukemia virus type 1. Recurrent somatic mutations in host genes have exposed the T-cell receptor pathway through nuclear factor κB to interferon regulatory factor 4 (IRF4) as an essential driver for this malignancy. We sought to determine if IRF4 represents a therapeutic target for ATLL and to identify downstream effectors and biomarkers of IRF4 signaling in vivo. RESULTS: ATLL cell lines, particularly Tax viral oncoprotein-negative cell lines, that most closely resemble ATLL in humans, were sensitive to dose- and time-dependent inhibition by a next-generation class of IRF4 antisense oligonucleotides (ASOs) that employ constrained ethyl residues that mediate RNase H-dependent RNA degradation. ATLL cell lines were also sensitive to lenalidomide, which repressed IRF4 expression. Both ASOs and lenalidomide inhibited ATLL proliferation in vitro and in vivo. To identify biomarkers of IRF4-mediated CD4 + T-cell expansion in vivo, transcriptomic analysis identified several genes that encode key regulators of ATLL, including interleukin 2 receptor subunits α and ß, KIT ligand, cytotoxic T-lymphocyte-associated protein 4, and thymocyte selection-associated high mobility group protein TOX 2. CONCLUSIONS: These data support the pursuit of IRF4 as a therapeutic target in ATLL with the use of either ASOs or lenalidomide.


Asunto(s)
Infecciones por HTLV-I/metabolismo , Factores Reguladores del Interferón/metabolismo , Leucemia-Linfoma de Células T del Adulto/metabolismo , Animales , Linfocitos T CD4-Positivos/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Productos del Gen tax/metabolismo , Infecciones por HTLV-I/tratamiento farmacológico , Infecciones por HTLV-I/patología , Virus Linfotrópico T Tipo 1 Humano , Humanos , Factores Reguladores del Interferón/genética , Lenalidomida/farmacología , Leucemia-Linfoma de Células T del Adulto/tratamiento farmacológico , Leucemia-Linfoma de Células T del Adulto/patología , Ratones , Oligonucleótidos Antisentido/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Tionucleótidos/farmacología
13.
EBioMedicine ; 58: 102908, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32707450

RESUMEN

BACKGROUND: High-molecular-weight kininogen is a cofactor of the human contact system, an inflammatory response mechanism that is activated during sepsis. It has been shown that high-molecular-weight kininogen contributes to endotoxemia, but is not critical for local host defense during pneumonia by Gram-negative bacteria. However, some important pathogens, such as Streptococcus pyogenes, can cleave kininogen by contact system activation. Whether kininogen causally affects antibacterial host defense in S. pyogenes infection, remains unknown. METHODS: Kininogen concentration was determined in course plasma samples from septic patients. mRNA expression and degradation of kininogen was determined in liver or plasma of septic mice. Kininogen was depleted in mice by treatment with selective kininogen directed antisense oligonucleotides (ASOs) or a scrambled control ASO for 3 weeks prior to infection. 24 h after infection, infection parameters were determined. FINDINGS: Data from human and mice samples indicate that kininogen is a positive acute phase protein. Lower kininogen concentration in plasma correlate with a higher APACHE II score in septic patients. We show that ASO-mediated depletion of kininogen in mice indeed restrains streptococcal spreading, reduces levels of proinflammatory cytokines such as IL-1ß and IFNγ, but increased intravascular tissue factor and fibrin deposition in kidneys of septic animals. INTERPRETATION: Mechanistically, kininogen depletion results in reduced plasma kallikrein levels and, during sepsis, in increased intravascular tissue factor that may reinforce immunothrombosis, and thus reduce streptococcal spreading. These novel findings point to an anticoagulant and profibrinolytic role of kininogens during streptococcal sepsis. FUNDING: Full details are provided in the Acknowledgements section.


Asunto(s)
Bacteriemia/microbiología , Quininógenos/sangre , Quininógenos/genética , Infecciones Estreptocócicas/metabolismo , Streptococcus pyogenes/patogenicidad , Animales , Bacteriemia/tratamiento farmacológico , Bacteriemia/genética , Bacteriemia/metabolismo , Estudios de Casos y Controles , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Quininógenos/química , Hígado/metabolismo , Ratones , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/farmacología , Proteolisis , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/genética
14.
J Thromb Haemost ; 18(7): 1773-1782, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32227586

RESUMEN

BACKGROUND: Platelets are effector cells of the innate and adaptive immune system; however, understanding their role during inflammation-driven pathologies can be challenging due to several drawbacks associated with current platelet depletion methods. The generation of antisense oligonucleotides (ASOs) directed to thrombopoietin (Tpo) mRNA represents a novel method to reduce circulating platelet count. OBJECTIVE: To understand if Tpo-targeted ASO treatment represents a viable strategy to specifically reduce platelet count in mice. METHODS: Female and male mice were treated with TPO-targeted ASOs and platelet count and function was assessed, in addition to circulating blood cell counts and hematopoietic stem and progenitor cells. The utility of the platelet-depletion strategy was assessed in a murine model of lower airway dysbiosis. RESULTS AND CONCLUSIONS: Herein, we describe how in mice, ASO-mediated silencing of hepatic TPO expression reduces platelet, megakaryocyte, and megakaryocyte progenitor count, without altering platelet activity. TPO ASO-mediated platelet depletion can be achieved acutely and sustained chronically in the absence of adverse bleeding. TPO ASO-mediated platelet depletion allows for the reintroduction of new platelets, an advantage over commonly used antibody-mediated depletion strategies. Using a murine model of lung inflammation, we demonstrate that platelet depletion, induced by either TPO ASO or anti-CD42b treatment, reduces the accumulation of inflammatory immune cells, including monocytes and macrophages, in the lung. Altogether, we characterize a new platelet depletion method that can be sustained chronically and allows for the reintroduction of new platelets highlighting the utility of the TPO ASO method to understand the role of platelets during chronic immune-driven pathologies.


Asunto(s)
Plaquetas , Trombopoyetina , Animales , Femenino , Masculino , Megacariocitos , Ratones , Oligonucleótidos Antisentido , Recuento de Plaquetas
15.
Haematologica ; 105(5): 1424-1435, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31320552

RESUMEN

Sepsis causes an activation of the human contact system, an inflammatory response mechanism against foreign surfaces, proteins and pathogens. The serine proteases of the contact system, factor XII and plasma kallikrein, are decreased in plasma of septic patients, which was previously associated with an unfavorable outcome. However, the precise mechanisms and roles of contact system factors in bacterial sepsis are poorly understood. We, therefore, studied the physiological relevance of factor XII and plasma kallikrein in a mouse model of experimental sepsis. We show that decreased plasma kallikrein concentration in septic mice is a result of reduced mRNA expression plasma prekallikrein gene, indicating that plasma kallikrein belong to negative acute phase proteins. Investigations regarding the pathophysiological function of contact system proteases during sepsis revealed different roles for factor XII and plasma kallikrein. In vitro, factor XII decelerated bacteria induced fibrinolysis, whereas plasma kallikrein supported it. Remarkably, depletion of plasma kallikrein (but not factor XII) by treatment with antisense-oligonucleotides, dampens bacterial dissemination and growth in multiple organs in the mouse sepsis model. These findings identify plasma kallikrein as a novel host pathogenicity factor in Streptococcus pyogenes sepsis.


Asunto(s)
Sepsis , Infecciones Estreptocócicas , Animales , Factor XII , Humanos , Ratones , Péptido Hidrolasas
16.
Mol Cancer ; 18(1): 141, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601234

RESUMEN

BACKGROUND: PVT1 has emerged as an oncogene in many tumor types. However, its role in Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC) is unknown. The aim of this study was to assess the role of PVT1 in BE/EAC progression and uncover its therapeutic value against EAC. METHODS: PVT1 expression was assessed by qPCR in normal, BE, and EAC tissues and statistical analysis was performed to determine the association of PVT1 expression and EAC (stage, metastases, and survival). PVT1 antisense oligonucleotides (ASOs) were tested for their antitumor activity in vitro and in vivo. RESULTS: PVT1 expression was up-regulated in EACs compared with paired BEs, and normal esophageal tissues. High expression of PVT1 was associated with poor differentiation, lymph node metastases, and shorter survival. Effective knockdown of PVT1 in EAC cells using PVT1 ASOs resulted in decreased cell proliferation, invasion, colony formation, tumor sphere formation, and reduced proportion of ALDH1A1+ cells. Mechanistically, we discovered mutual regulation of PVT1 and YAP1 in EAC cells. Inhibition of PVT1 by PVT1 ASOs suppressed YAP1 expression through increased phosphor-LATS1and phosphor-YAP1 while knockout of YAP1 in EAC cells significantly suppressed PVT1 levels indicating a positive regulation of PVT1 by YAP1. Most importantly, we found that targeting both PVT1 and YAP1 using their specific ASOs led to better antitumor activity in vitro and in vivo. CONCLUSIONS: Our results provide strong evidence that PVT1 confers an aggressive phenotype to EAC and is a poor prognosticator. Combined targeting of PVT1 and YAP1 provided the highest therapeutic index and represents a novel therapeutic strategy.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/mortalidad , Biomarcadores de Tumor , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidad , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/genética , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Adenocarcinoma/tratamiento farmacológico , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Modelos Animales de Enfermedad , Neoplasias Esofágicas/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Modelos Biológicos , Pronóstico , Factores de Transcripción/antagonistas & inhibidores , Proteínas Señalizadoras YAP
17.
Nucleic Acids Res ; 47(21): 11284-11303, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31612951

RESUMEN

Endocytosis is a mechanism by which cells sense their environment and internalize various nutrients, growth factors and signaling molecules. This process initiates at the plasma membrane, converges with autophagy, and terminates at the lysosome. It is well-established that cellular uptake of antisense oligonucleotides (ASOs) proceeds through the endocytic pathway; however, only a small fraction escapes endosomal trafficking while the majority are rendered inactive in the lysosome. Since these pathways converge and share common molecular machinery, it is unclear if autophagy-related trafficking participates in ASO uptake or whether modulation of autophagy affects ASO activity and localization. To address these questions, we investigated the effects of autophagy modulation on ASO activity in cells and mice. We found that enhancing autophagy through small-molecule mTOR inhibition, serum-starvation/fasting, and ketogenic diet, increased ASO-mediated target reduction in vitro and in vivo. Additionally, autophagy activation enhanced the localization of ASOs into autophagosomes without altering intracellular concentrations or trafficking to other compartments. These results support a novel role for autophagy and the autophagosome as a previously unidentified compartment that participates in and contributes to enhanced ASO activity. Further, we demonstrate non-chemical methods to enhance autophagy and subsequent ASO activity using translatable approaches such as fasting or ketogenic diet.


Asunto(s)
Autofagia/fisiología , Oligonucleótidos Antisentido/metabolismo , Animales , Autofagosomas/metabolismo , Transporte Biológico/fisiología , Células Cultivadas , Endocitosis/fisiología , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Oligonucleótidos Antisentido/genética , Interferencia de ARN , Transducción de Señal
18.
JCI Insight ; 4(17)2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31484823

RESUMEN

Sustained therapeutic responses from traditional and next-generation antiandrogen therapies remain elusive in clinical practice due to inherent and/or acquired resistance resulting in persistent androgen receptor (AR) activity. Antisense oligonucleotides (ASO) have the ability to block target gene expression and associated protein products and provide an alternate treatment strategy for castration-resistant prostate cancer (CRPC). We demonstrate the efficacy and therapeutic potential of this approach with a Generation-2.5 ASO targeting the mouse AR in genetically engineered models of prostate cancer. Furthermore, reciprocal feedback between AR and PI3K/AKT signaling was circumvented using a combination approach of AR-ASO therapy with the potent pan-AKT inhibitor, AZD5363. This treatment strategy effectively improved treatment responses and prolonged survival in a clinically relevant mouse model of advanced CRPC. Thus, our data provide preclinical evidence to support a combination strategy of next-generation ASOs targeting AR in combination with AKT inhibition as a potentially beneficial treatment approach for CRPC.


Asunto(s)
Antineoplásicos/farmacología , Oligonucleótidos Antisentido/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oligonucleótidos Antisentido/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Proteínas Proto-Oncogénicas c-akt/farmacología , Pirimidinas , Pirroles , Transcriptoma
19.
Mol Ther ; 27(9): 1547-1557, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31303442

RESUMEN

Antisense oligonucleotides (ASOs) are a novel therapeutic approach to target difficult-to-drug protein classes by targeting their corresponding mRNAs. Significantly enhanced ASO activity has been achieved by the targeted delivery of ASOs to selected tissues. One example is the targeted delivery of ASOs to hepatocytes, achieved with N-acetylgalactosamine (GalNAc) conjugation to ASO, which results in selective uptake by asialoglycoprotein receptor (ASGR). Here we have evaluated the potential of GalNAc-conjugated ASOs as a therapeutic approach to targeting difficult-to-drug pathways in hepatocellular carcinoma (HCC). The activity of GalNAc-conjugated ASOs was superior to that of the unconjugated parental ASO in ASGR (+) human HCC cells in vitro, but not in ASGR (-) cells. Both human- and mouse-derived HCC displayed reduced levels of ASGR, however, despite this, GalNAc-conjugated ASOs showed a 5- to 10-fold increase in potency in tumors. Systemically administered GalNAc-conjugated ASOs demonstrated both enhanced antisense activity and antitumor activity in the diethylnitrosamine-induced HCC tumor model. Finally, GalNAc conjugation enhanced ASO activity in human circulating tumor cells from HCC patients, demonstrating the potential of this approach in primary human HCC tumor cells. Taken together, these results provide a strong rationale for a potential therapeutic use of GalNAc-conjugated ASOs for the treatment of HCC.


Asunto(s)
Acetilgalactosamina/química , Técnicas de Transferencia de Gen , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/química , Animales , Receptor de Asialoglicoproteína/genética , Receptor de Asialoglicoproteína/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular , Células Cultivadas , Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones
20.
Cancer Res ; 79(10): 2748-2760, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30885978

RESUMEN

Although the majority of adult tissues express only hexokinase 1 (HK1) for glycolysis, most cancers express hexokinase 2 (HK2) and many coexpress HK1 and HK2. In contrast to HK1+HK2+ cancers, HK1-HK2+ cancer subsets are sensitive to cytostasis induced by HK2shRNA knockdown and are also sensitive to synthetic lethality in response to the combination of HK2shRNA knockdown, an oxidative phosphorylation (OXPHOS) inhibitor diphenyleneiodonium (DPI), and a fatty acid oxidation (FAO) inhibitor perhexiline (PER). The majority of human multiple myeloma cell lines are HK1-HK2+. Here we describe an antisense oligonucleotide (ASO) directed against human HK2 (HK2-ASO1), which suppressed HK2 expression in human multiple myeloma cell cultures and human multiple myeloma mouse xenograft models. The HK2-ASO1/DPI/PER triple-combination achieved synthetic lethality in multiple myeloma cells in culture and prevented HK1-HK2+ multiple myeloma tumor xenograft progression. DPI was replaceable by the FDA-approved OXPHOS inhibitor metformin (MET), both for synthetic lethality in culture and for inhibition of tumor xenograft progression. In addition, we used an ASO targeting murine HK2 (mHK2-ASO1) to validate the safety of mHK2-ASO1/MET/PER combination therapy in mice bearing murine multiple myeloma tumors. HK2-ASO1 is the first agent that shows selective HK2 inhibition and therapeutic efficacy in cell culture and in animal models, supporting clinical development of this synthetically lethal combination as a therapy for HK1-HK2+ multiple myeloma. SIGNIFICANCE: A first-in-class HK2 antisense oligonucleotide suppresses HK2 expression in cell culture and in in vivo, presenting an effective, tolerated combination therapy for preventing progression of HK1-HK2+ multiple myeloma tumors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/10/2748/F1.large.jpg.


Asunto(s)
Hexoquinasa/genética , Mieloma Múltiple/patología , Oligonucleótidos Antisentido/farmacología , Mutaciones Letales Sintéticas , Animales , Línea Celular Tumoral , Proliferación Celular , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...